

Sedimenthaushalt der Gewässer in Oberösterreich

Drei Hauptprobleme:

- (1) Defizit an groben Sedimenten in den größeren Alpenvorland-Flüssen
- (2) Hohe Feinsediment-Anteile in den intensive genutzten Bereichen
- (3) Hohe Sandfrachten in manchen Bereichen der Böhmischen Masse / Mühlviertel



Feinsedimente in den Gewässern Oberösterreich

Blöcke > 20 cm Steine 6,3 - 20 cm Grobkies 2 - 6,3 cm Mittelkies 6,3 - 20 mm Feinkies 2,0 - 6,3 mm Grobsand 0,63 - 2 mm Mittelsand 0,2 - 0,63 mm Feinsand 0,063 - 0,2 mm Schluff 0,002 - 0,063 mm	Klasse	Korndurchmesser
Grobkies 2 - 6,3 cm Mittelkies 6,3 - 20 mm Feinkies 2,0 - 6,3 mm Grobsand 0,63 - 2 mm Mittelsand 0,2 - 0,63 mm Feinsand 0,063 - 0,2 mm	Blöcke	> 20 cm
Mittelkies 6,3 - 20 mm Feinkies 2,0 - 6,3 mm Grobsand 0,63 - 2 mm Mittelsand 0,2 - 0,63 mm Feinsand 0,063 - 0,2 mm	Steine	6,3 - 20 cm
Feinkies 2,0 - 6,3 mm Grobsand 0,63 - 2 mm Mittelsand 0,2 - 0,63 mm Feinsand 0,063 - 0,2 mm	Grobkies	2 - 6,3 cm
Grobsand 0,63 - 2 mm Mittelsand 0,2 - 0,63 mm Feinsand 0,063 - 0,2 mm	Mittelkies	6,3 - 20 mm
Mittelsand 0,2 - 0,63 mm Feinsand 0,063 - 0,2 mm	Feinkies	2,0 - 6,3 mm
Feinsand 0,063 - 0,2 mm	Grobsand	0,63 - 2 mm
	Mittelsand	0,2 - 0,63 mm
Schluff 0,002 - 0,063 mm	Feinsand	0,063 - 0,2 mm
	Schluff	0,002 - 0,063 mm
Ton < 0,002 mm	Ton	< 0,002 mm

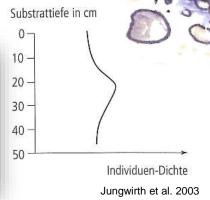
Sauerstoffversorgung: schlecht Kolmation

Habitat Qualität: schlecht

Sauerstoffversorgung: gut hohe Mobilität Habitat Qualität: schlecht

Die Gewässersohle als Lebensraum

Biofilm, Makrophyten




Fischeier, Fischlarven und adulte Fische

Makrozoobenthos

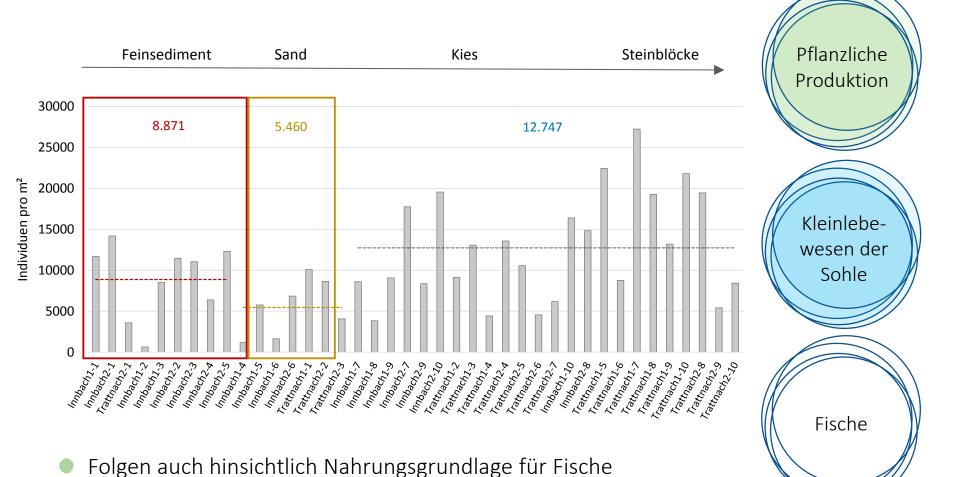
Muscheln

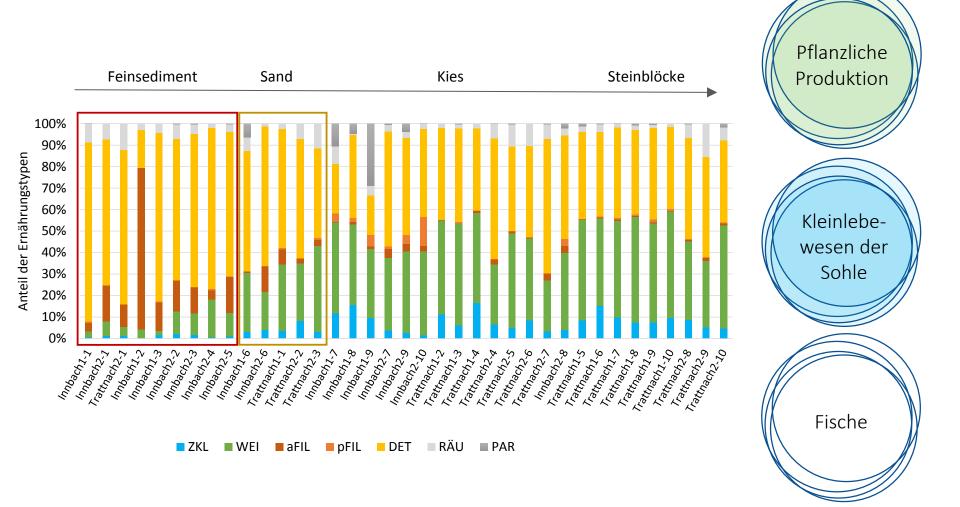
Feinsedimentbelastungen von Ökosystemen

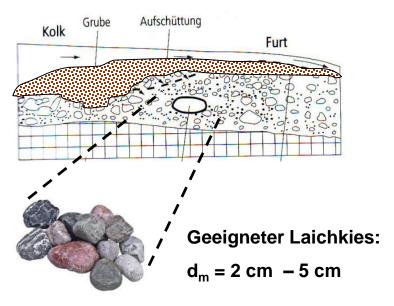
Versandung und Feinsediment

- Auswirkungen auf Gewässerpflanzen und Algen
- Kombination auch mit hohen Nährstofffrachten

- Vielfache Auswirkungen auf die Kleinlebewesen im Gewässer (Makrozoobenthos)
- Enorme Formenvielfalt: 68 Fischarten,
 über 5000 Makrozoobenthos-Arten



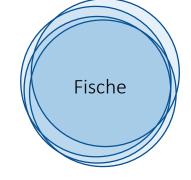




Laichplätze / andere Habitate für Kieslaicher (z.B. Bachforelle,

Äsche) gehen verloren

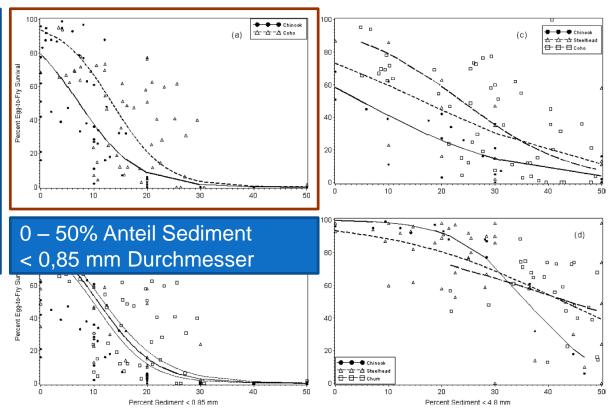
Sauerstoffprobleme im Sediment

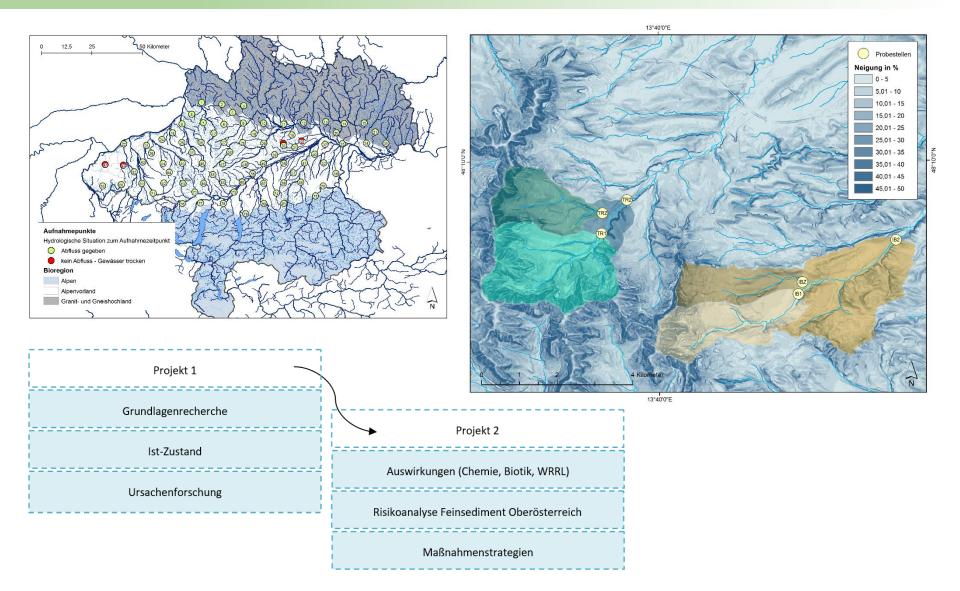


Kleinlebewesen der Sohle

 noch viel Forschungsbedarf – auch schwierig fischereiliche Schäden zu quantifizieren

0 – 100% Überlebensrate Ei zu Larve




Figure 1 Relationship between egg-to-fry survival and percent sediment, showing data from the literature used in analysis. (a) Data and modeled egg-to-fry survival of Chinook and coho salmon vs. percent sediment < 0.85 mm. (b) Egg-to-fry survival for Chinook salmon vs. percent sediment < 0.85 mm. (b) Egg-to-fry survival for Chinook salmon vs. percent sediment < 0.85 mm. (d) Data and modeled sediment sedim

Kleinlebewesen der Sohle

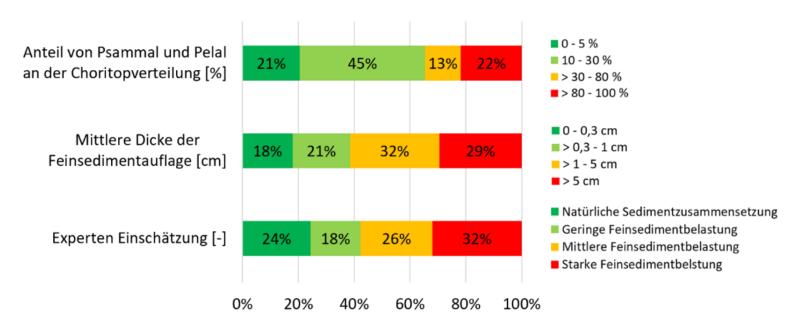


Abb. 4 Zusammenfassende Darstellung der Ist-Zustandsbewertung hinsichtlich Feinsedimentbelastung im ersten Projekt.

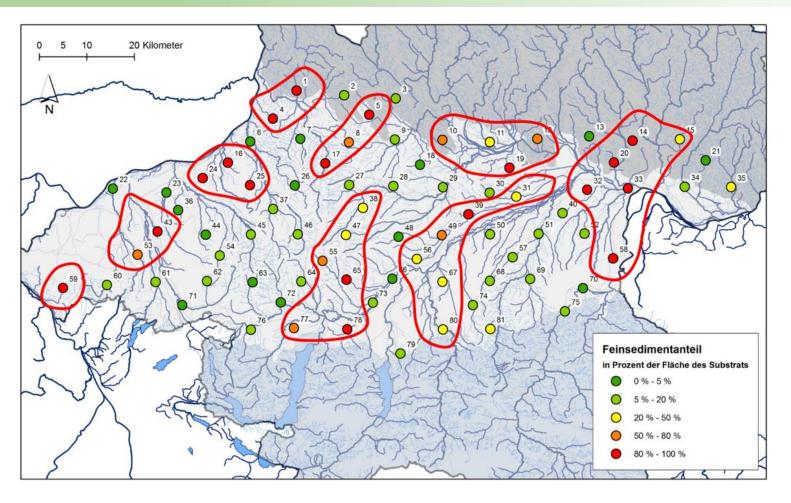
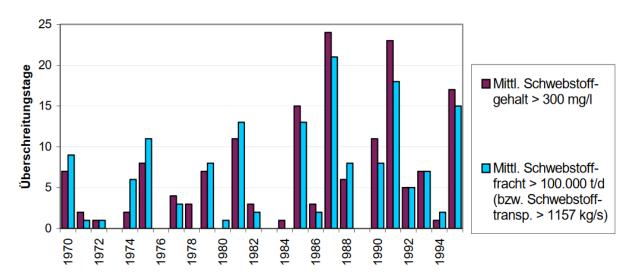



Abb. 5 Geografische Verteilung der Feinsedimentbelastung an Hand des Parameters "Flächenanteil von Schluff und Sand an der Substratauflage" (fs_flaech)(rote Markierung...rein optische Clusterung der Feinsediment-Hauptbelastungs-Gebiete).

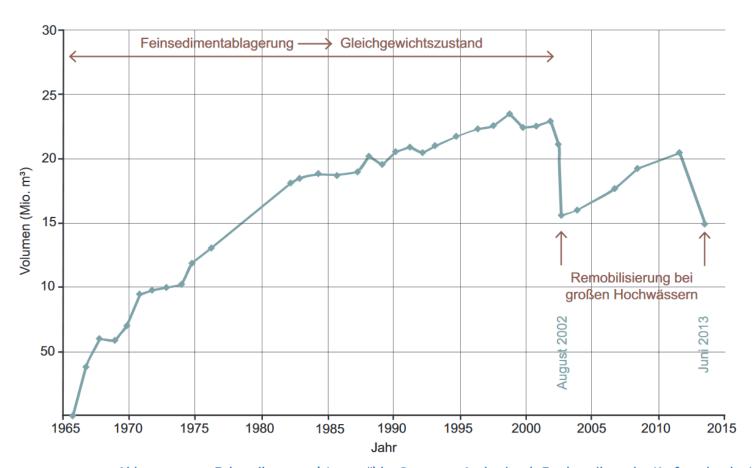
- keine sehr langen Zeitreihen zum Schwebstofftransport in den großen Flüssen (alle nach den großen Landnutzungsänderungen)
- keine Messungen in kleinen Gewässern
- Trend in Richtung vermehrt sehr hohe Frachten bei Starkregenereignissen (z.B. Donau bei Ybbs, Nachtnebel et al. 1998)

Tab. 2 Exemplarische Feinsedimentfrachten bei Starkregenereignissen in verschiedenen Gewässern.

Ŋ.	Gewässer	Probenummer	Datum	Uhrzeit	D.	Wasserführung	Hydrologie Zusatzinfo	Feinsediment- gehalt [g/l]
1	Innbach		09.06.2015	12:45	Weg bei Hilling	HQ	abklingende Welle	2,02
2	Aist		31.05.2016	11:00	Baustelle Aist Unterlauf	HQ	eher abklingende Welle	1,45
3	Aist	1	31.05.2016	11:45	Brücke Engel	HQ	eher abklingende Welle	1,64
4	Kettenbach	2	31.05.2016	12:00	vor Mündung in die Aist	HQ	eher abklingende Welle	0,40
5	Waldaist	3	31.05.2016	12:10	bei Brücke oh. Zusammenfluss	HQ	eher abklingende Welle	0,52
6	Feldaist	4	31.05.2016	12:15	bei Brücke oh. Zusammenfluss	HQ	eher abklingende Welle	1,52
7	Etzenbach	5	31.05.2016	14:00	bei Brückerl	HQ	abklingende Welle	0,31
8	Große Gusen		05.06.2016	15:45	Gallneukirchen Uferweg	HQ	Peak	0,47
9	Flanitz	1	06.06.2016	15:40	Muschelzucht Kefermarkt	HQ	anlaufende Welle	2,46
10	Flanitz	2	06.06.2016	17:15	Muschelzucht Kefermarkt	HQ	anlaufende Welle / Peak	4,16
11	Flanitz	3	06.06.2016	17:50	Muschelzucht Kefermarkt	HQ	Peak	1,46

Hochwasserabfluss von

30 m³/sec


(z.B. Trattnach / B. Schallerb. HQ₁=50 m³/s)

 \Rightarrow 60 kg pro Sekunde

⇒ ca. 200 t pro Stunde

In der Donau im Schnitt 3-6 Mio. Tonnen Jahresfracht (www.lebensministerium.at)

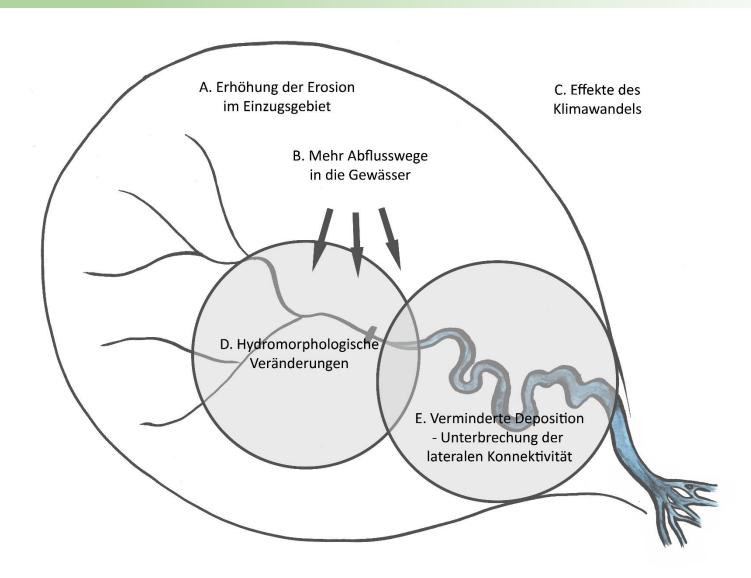

Jungwirth et al. 2014 – Donau - Landschaft. Fisch. Geschichte.

Abb. 3.26 Ablagerung von Feinsedimenten ("Letten") im Stauraum Aschach seit Fertigstellung des Kraftwerkes im Jahr 1964 bis 2013 sowie deren Remobilisierung bei den beiden Hochwasserereignissen 2002 und 2013

- Feinsediment-Habitate sind Teil des Systems aber:
 - in großen Mengen nur in sehr speziellen Systemen
 - nicht flächig v.a. nicht in den kleinen Bächen und Flüssen
 - nicht im derzeitigen Ausmaß
- Was hat sich geändert?

- A Erhöhung der Erosion
 - Zunahme der Risikokulturen
 - Veränderungen in der Landbewirtschaftung
 - Versiegelung inkl.
 überlasteten Abflussgräben

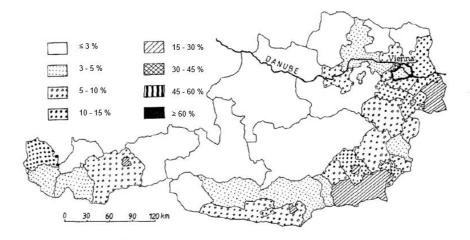


Abb. 6 Mais-Anbau in Österreich im Jahr 1960; Anteil des Maises an der kultivierbaren Fläche (basierend auf KLAGHOFER & HINTERSTEINER, 1993).

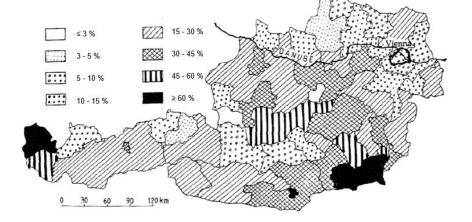
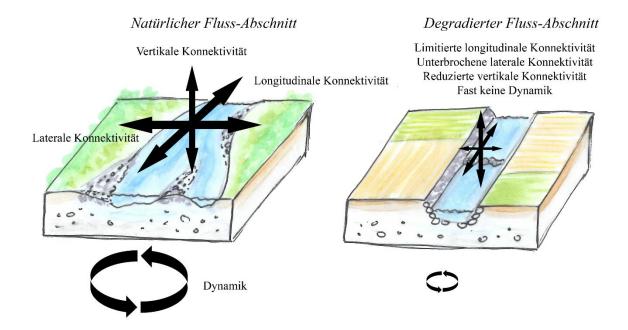


Abb. 7 Mais-Anbau in Österreich im Jahr 1986; Anteil des Maises an der kultivierbaren Fläche (basierend auf KLAGHOFER & HINTERSTEINER, 1993).

- B Mehr direkte Eintragspfade / mehr direkte Verbindungen zu den Gewässern
 - Damit ein Eintrag in ein Gewässer passiert, müssen immer eine Feinsedimentquelle und ein Eintragspfad zusammenspielen.
 - Straßen- und Siedlungsentwässerungen entscheidender Faktor, Drainagen (v.a. defekte)

- C Effekte des Klimawandels
 - Vermehrte Starkregenereignisse
 - Weniger Schnee mehr Regen
 - Änderungen in den Wasserführungen (lange Niederwasserphasen, starke Hochwässer, wenig Mittelwassersituationen)

- D Hydromorphologische Veränderungen in den Gewässern
 - Staue, Restwasserstrecken,...
 - Regulierungen
 - Eintiefung, hydraulische Überlastung
 - Strukturarmut



- E Unterbrechung des Fluss-Umland Gefüges
 - Sedimentaustrag wird verhindert
 - Früher haben sich mit dem erodierten Material ganze Beckenlandschaften aufgefüllt (z.B.
 Eferdinger Becken, Machland, etc.) => heute Gebiete mit der intensivsten Nutzungen
 - Das wird heute fast zu 100% unterbunden nur mehr wenige Auwaldflächen

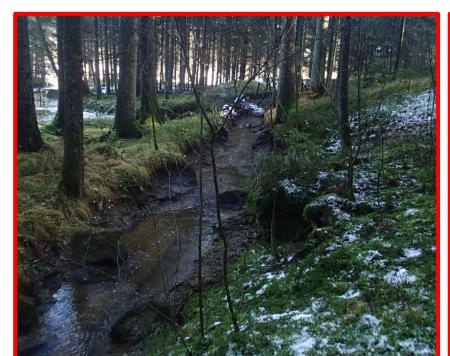
- Flächenhafte Maßnahmenprogramme, gute landwirtschaftliche Praxis, etc. sind wichtig für die Reduktion der allg. Erosion und die Förderung der Bodengesundheit!!
- Diverse Studien haben aber gezeigt: höchste Abträge bei konkreten
 Niederschlagsereignissen an ganz bestimmten Hot-Spots => individuelle Betrachtung auf Betriebs-, Gemeinde- und Einzugsgebietsebene notwendig
- Es braucht oft keine großen Flächen sondern kleine Maßnahmen an der richtigen
 Stelle: Auwald, Feuchtwiese, Absetzmulde, etc.
- Die wichtigsten Regeln neben der Erosionsreduktion:
 - 1. DAS WICHTIGSTE IST WASSER- und SEDIMENTRÜCKHALT in unserer Landschaft (auch im Hinblick auf die notwendige Klimawandel-Anpassung, Hochwasserschutz, etc.)
 - 2. Erosionsquellen und Eintragspfade voneinander trennen
 - 3. Naturnahe Gewässer inklusive Auflächen zulassen / fördern

- 1 Keine langen Fließwege am Feld zulassen
 - heuer mehrfach gesehen => tiefe Querrillen quer zum Hang gezogen
 - Ableiten in die Fläche
 - kann man z.B. auch auf den DORIS-Orthofotos erkennen, wo solche Wasserwege sind

blattfisch e.U. - Technisches Büro für Gewässerökologie - Austria

 Bei größeren Problemen Rückhaltestrukturen: Flächen normal zu bewirtschaften, nur im Starkregenfall Drosselung des Abflusses

- 2 Felder von Straßengräben abtrennen
 - Wiesenstreifen
 - "ÖPUL-Flächen",…



- 3 Kleine Maßnahmen im forstlichen Bereich
 - Ableitungen in die Flächen von Forstwegen
 - Kleine Strukturen in Gräben verhindern Tiefenerosion und fördern Sediment- und Wasserrückhalt
 - Naturnahen Waldaufbau f\u00f6rdern

- 4 Naturnahe Gewässerentwicklung, die das Thema Feinsediment besser einbezieht
 - Auflächen gehören zum Gewässer
 - Einmündung von kleinen Gewässern, Drainagen, Oberflächenentwässerungen dahingehend in die Planung einbeziehen (z.B. Sickerflächen,...)
 - Dynamische Gewässer mit hoher Strukturausstattung und variablen Gefällesituationen
 - Einbeziehen von Siedlungswasserbau und Straßenerhaltern

Mündungssituationen von Gräben, Drainagen,...

